Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients
نویسنده
چکیده
Let L(y) = b be a linear differential equation with coefficients in a differential field K. We discuss the problem of deciding if such an equation has a non-zero solution in K and give a decision procedure in case K is an elementary extension of the field of rational functions or is an algebraic extension of a transcendental liouvillian extension of the field of rational functions. We show how one can use this result to give a procedure to find a basis for the space of solutions, liouvillian over K, of L(y)=0 where K is such a field and L(y) has coefficients in K.
منابع مشابه
An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations
A normal form is given for integrable linear difference-differential equations {σ(Y ) = AY, δ(Y ) = BY }, which is irreducible over C(x, t) and solvable in terms of liouvillian solutions. We refine this normal form and devise an algorithm to compute all liouvillian solutions of such kind of systems of prime order.
متن کاملLiouvillian Solutions of Difference-Differential Equations
For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y ) = AY, δ(Y ) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. We will give an algorithm to decide whether such a system has liouvillian solutions when k = C(x, t), σ(x) = x+ 1, ...
متن کاملLiouvillian First Integrals of Differential Equations
Liouvillian functions are functions that are built up from rational functions using exponentiation, integration, and algebraic functions. We show that if a system of differential equations has a generic solution that satisfies a liouvillian relation, that is, there is a liouvillian function of several variables vanishing on the curve defined by this solution, then the system has a liouvillian f...
متن کاملLiouvillian solutions of linear difference-differential equations
For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y ) = AY, δ(Y ) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. We will give an algorithm to decide whether such a system has liouvillian solutions when k = C(x, t), σ(x) = x + 1,...
متن کاملComputing the Galois Group of Some Parameterized Linear Differential Equation of Order Two
We extend Kovacic’s algorithm to compute the differential Galois group of some second order parameterized linear differential equation. In the case where no Liouvillian solutions could be found, we give a necessary and sufficient condition for the integrability of the system. We give various examples of computation. Introduction Let us consider the linear differential equation ( ∂XY (X) ∂2 XY (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 1991